xbmcbackup/resources/lib/dropbox/stone_validators.py

593 lines
21 KiB
Python
Raw Normal View History

"""
Defines classes to represent each Stone type in Python. These classes should
be used to validate Python objects and normalize them for a given type.
The data types defined here should not be specific to an RPC or serialization
format.
This module should be dropped into a project that requires the use of Stone. In
the future, this could be imported from a pre-installed Python package, rather
than being added to a project.
"""
from __future__ import absolute_import, unicode_literals
from abc import ABCMeta, abstractmethod
import datetime
import math
import numbers
import re
import six
_MYPY = False
if _MYPY:
import typing # noqa: F401 # pylint: disable=import-error,unused-import,useless-suppression
# See <http://python3porting.com/differences.html#buffer>
if six.PY3:
_binary_types = (bytes, memoryview) # noqa: E501,F821 # pylint: disable=undefined-variable,useless-suppression
else:
_binary_types = (bytes, buffer) # noqa: E501,F821 # pylint: disable=undefined-variable,useless-suppression
class ValidationError(Exception):
"""Raised when a value doesn't pass validation by its validator."""
def __init__(self, message, parent=None):
"""
Args:
message (str): Error message detailing validation failure.
parent (str): Adds the parent as the closest reference point for
the error. Use :meth:`add_parent` to add more.
"""
super(ValidationError, self).__init__(message)
self.message = message
self._parents = []
if parent:
self._parents.append(parent)
def add_parent(self, parent):
"""
Args:
parent (str): Adds the parent to the top of the tree of references
that lead to the validator that failed.
"""
self._parents.append(parent)
def __str__(self):
"""
Returns:
str: A descriptive message of the validation error that may also
include the path to the validator that failed.
"""
if self._parents:
return '{}: {}'.format('.'.join(self._parents[::-1]), self.message)
else:
return self.message
def __repr__(self):
# Not a perfect repr, but includes the error location information.
return 'ValidationError(%r)' % six.text_type(self)
def generic_type_name(v):
"""Return a descriptive type name that isn't Python specific. For example,
an int value will return 'integer' rather than 'int'."""
if isinstance(v, numbers.Integral):
# Must come before real numbers check since integrals are reals too
return 'integer'
elif isinstance(v, numbers.Real):
return 'float'
elif isinstance(v, (tuple, list)):
return 'list'
elif isinstance(v, six.string_types):
return 'string'
elif v is None:
return 'null'
else:
return type(v).__name__
class Validator(object):
"""All primitive and composite data types should be a subclass of this."""
__metaclass__ = ABCMeta
@abstractmethod
def validate(self, val):
"""Validates that val is of this data type.
Returns: A normalized value if validation succeeds.
Raises: ValidationError
"""
pass
def has_default(self):
return False
def get_default(self):
raise AssertionError('No default available.')
class Primitive(Validator):
"""A basic type that is defined by Stone."""
# pylint: disable=abstract-method
pass
class Boolean(Primitive):
def validate(self, val):
if not isinstance(val, bool):
raise ValidationError('%r is not a valid boolean' % val)
return val
class Integer(Primitive):
"""
Do not use this class directly. Extend it and specify a 'minimum' and
'maximum' value as class variables for a more restrictive integer range.
"""
minimum = None # type: typing.Optional[int]
maximum = None # type: typing.Optional[int]
def __init__(self, min_value=None, max_value=None):
"""
A more restrictive minimum or maximum value can be specified than the
range inherent to the defined type.
"""
if min_value is not None:
assert isinstance(min_value, numbers.Integral), \
'min_value must be an integral number'
assert min_value >= self.minimum, \
'min_value cannot be less than the minimum value for this ' \
'type (%d < %d)' % (min_value, self.minimum)
self.minimum = min_value
if max_value is not None:
assert isinstance(max_value, numbers.Integral), \
'max_value must be an integral number'
assert max_value <= self.maximum, \
'max_value cannot be greater than the maximum value for ' \
'this type (%d < %d)' % (max_value, self.maximum)
self.maximum = max_value
def validate(self, val):
if not isinstance(val, numbers.Integral):
raise ValidationError('expected integer, got %s'
% generic_type_name(val))
elif not (self.minimum <= val <= self.maximum):
raise ValidationError('%d is not within range [%d, %d]'
% (val, self.minimum, self.maximum))
return val
def __repr__(self):
return '%s()' % self.__class__.__name__
class Int32(Integer):
minimum = -2**31
maximum = 2**31 - 1
class UInt32(Integer):
minimum = 0
maximum = 2**32 - 1
class Int64(Integer):
minimum = -2**63
maximum = 2**63 - 1
class UInt64(Integer):
minimum = 0
maximum = 2**64 - 1
class Real(Primitive):
"""
Do not use this class directly. Extend it and optionally set a 'minimum'
and 'maximum' value to enforce a range that's a subset of the Python float
implementation. Python floats are doubles.
"""
minimum = None # type: typing.Optional[float]
maximum = None # type: typing.Optional[float]
def __init__(self, min_value=None, max_value=None):
"""
A more restrictive minimum or maximum value can be specified than the
range inherent to the defined type.
"""
if min_value is not None:
assert isinstance(min_value, numbers.Real), \
'min_value must be a real number'
if not isinstance(min_value, float):
try:
min_value = float(min_value)
except OverflowError:
raise AssertionError('min_value is too small for a float')
if self.minimum is not None and min_value < self.minimum:
raise AssertionError('min_value cannot be less than the '
'minimum value for this type (%f < %f)' %
(min_value, self.minimum))
self.minimum = min_value
if max_value is not None:
assert isinstance(max_value, numbers.Real), \
'max_value must be a real number'
if not isinstance(max_value, float):
try:
max_value = float(max_value)
except OverflowError:
raise AssertionError('max_value is too large for a float')
if self.maximum is not None and max_value > self.maximum:
raise AssertionError('max_value cannot be greater than the '
'maximum value for this type (%f < %f)' %
(max_value, self.maximum))
self.maximum = max_value
def validate(self, val):
if not isinstance(val, numbers.Real):
raise ValidationError('expected real number, got %s' %
generic_type_name(val))
if not isinstance(val, float):
# This checks for the case where a number is passed in with a
# magnitude larger than supported by float64.
try:
val = float(val)
except OverflowError:
raise ValidationError('too large for float')
if math.isnan(val) or math.isinf(val):
raise ValidationError('%f values are not supported' % val)
if self.minimum is not None and val < self.minimum:
raise ValidationError('%f is not greater than %f' %
(val, self.minimum))
if self.maximum is not None and val > self.maximum:
raise ValidationError('%f is not less than %f' %
(val, self.maximum))
return val
def __repr__(self):
return '%s()' % self.__class__.__name__
class Float32(Real):
# Maximum and minimums from the IEEE 754-1985 standard
minimum = -3.40282 * 10**38
maximum = 3.40282 * 10**38
class Float64(Real):
pass
class String(Primitive):
"""Represents a unicode string."""
def __init__(self, min_length=None, max_length=None, pattern=None):
if min_length is not None:
assert isinstance(min_length, numbers.Integral), \
'min_length must be an integral number'
assert min_length >= 0, 'min_length must be >= 0'
if max_length is not None:
assert isinstance(max_length, numbers.Integral), \
'max_length must be an integral number'
assert max_length > 0, 'max_length must be > 0'
if min_length and max_length:
assert max_length >= min_length, 'max_length must be >= min_length'
if pattern is not None:
assert isinstance(pattern, six.string_types), \
'pattern must be a string'
self.min_length = min_length
self.max_length = max_length
self.pattern = pattern
self.pattern_re = None
if pattern:
try:
self.pattern_re = re.compile(r"\A(?:" + pattern + r")\Z")
except re.error as e:
raise AssertionError('Regex {!r} failed: {}'.format(
pattern, e.args[0]))
def validate(self, val):
"""
A unicode string of the correct length and pattern will pass validation.
In PY2, we enforce that a str type must be valid utf-8, and a unicode
string will be returned.
"""
if not isinstance(val, six.string_types):
raise ValidationError("'%s' expected to be a string, got %s"
% (val, generic_type_name(val)))
if not six.PY3 and isinstance(val, str):
try:
val = val.decode('utf-8')
except UnicodeDecodeError:
raise ValidationError("'%s' was not valid utf-8")
if self.max_length is not None and len(val) > self.max_length:
raise ValidationError("'%s' must be at most %d characters, got %d"
% (val, self.max_length, len(val)))
if self.min_length is not None and len(val) < self.min_length:
raise ValidationError("'%s' must be at least %d characters, got %d"
% (val, self.min_length, len(val)))
if self.pattern and not self.pattern_re.match(val):
raise ValidationError("'%s' did not match pattern '%s'"
% (val, self.pattern))
return val
class Bytes(Primitive):
def __init__(self, min_length=None, max_length=None):
if min_length is not None:
assert isinstance(min_length, numbers.Integral), \
'min_length must be an integral number'
assert min_length >= 0, 'min_length must be >= 0'
if max_length is not None:
assert isinstance(max_length, numbers.Integral), \
'max_length must be an integral number'
assert max_length > 0, 'max_length must be > 0'
if min_length is not None and max_length is not None:
assert max_length >= min_length, 'max_length must be >= min_length'
self.min_length = min_length
self.max_length = max_length
def validate(self, val):
if not isinstance(val, _binary_types):
raise ValidationError("expected bytes type, got %s"
% generic_type_name(val))
elif self.max_length is not None and len(val) > self.max_length:
raise ValidationError("'%s' must have at most %d bytes, got %d"
% (val, self.max_length, len(val)))
elif self.min_length is not None and len(val) < self.min_length:
raise ValidationError("'%s' has fewer than %d bytes, got %d"
% (val, self.min_length, len(val)))
return val
class Timestamp(Primitive):
"""Note that while a format is specified, it isn't used in validation
since a native Python datetime object is preferred. The format, however,
can and should be used by serializers."""
def __init__(self, fmt):
"""fmt must be composed of format codes that the C standard (1989)
supports, most notably in its strftime() function."""
assert isinstance(fmt, six.text_type), 'format must be a string'
self.format = fmt
def validate(self, val):
if not isinstance(val, datetime.datetime):
raise ValidationError('expected timestamp, got %s'
% generic_type_name(val))
elif val.tzinfo is not None and \
val.tzinfo.utcoffset(val).total_seconds() != 0:
raise ValidationError('timestamp should have either a UTC '
'timezone or none set at all')
return val
class Composite(Validator):
"""Validator for a type that builds on other primitive and composite
types."""
# pylint: disable=abstract-method
pass
class List(Composite):
"""Assumes list contents are homogeneous with respect to types."""
def __init__(self, item_validator, min_items=None, max_items=None):
"""Every list item will be validated with item_validator."""
self.item_validator = item_validator
if min_items is not None:
assert isinstance(min_items, numbers.Integral), \
'min_items must be an integral number'
assert min_items >= 0, 'min_items must be >= 0'
if max_items is not None:
assert isinstance(max_items, numbers.Integral), \
'max_items must be an integral number'
assert max_items > 0, 'max_items must be > 0'
if min_items is not None and max_items is not None:
assert max_items >= min_items, 'max_items must be >= min_items'
self.min_items = min_items
self.max_items = max_items
def validate(self, val):
if not isinstance(val, (tuple, list)):
raise ValidationError('%r is not a valid list' % val)
elif self.max_items is not None and len(val) > self.max_items:
raise ValidationError('%r has more than %s items'
% (val, self.max_items))
elif self.min_items is not None and len(val) < self.min_items:
raise ValidationError('%r has fewer than %s items'
% (val, self.min_items))
return [self.item_validator.validate(item) for item in val]
class Map(Composite):
"""Assumes map keys and values are homogeneous with respect to types."""
def __init__(self, key_validator, value_validator):
"""
Every Map key/value pair will be validated with item_validator.
key validators must be a subclass of a String validator
"""
self.key_validator = key_validator
self.value_validator = value_validator
def validate(self, val):
if not isinstance(val, dict):
raise ValidationError('%r is not a valid dict' % val)
return {
self.key_validator.validate(key):
self.value_validator.validate(value) for key, value in val.items()
}
class Struct(Composite):
def __init__(self, definition):
"""
Args:
definition (class): A generated class representing a Stone struct
from a spec. Must have a _fields_ attribute with the following
structure:
_fields_ = [(field_name, validator), ...]
where
field_name: Name of the field (str).
validator: Validator object.
"""
super(Struct, self).__init__()
self.definition = definition
def validate(self, val):
"""
For a val to pass validation, val must be of the correct type and have
all required fields present.
"""
self.validate_type_only(val)
self.validate_fields_only(val)
return val
def validate_fields_only(self, val):
"""
To pass field validation, no required field should be missing.
This method assumes that the contents of each field have already been
validated on assignment, so it's merely a presence check.
FIXME(kelkabany): Since the definition object does not maintain a list
of which fields are required, all fields are scanned.
"""
for field_name, _ in self.definition._all_fields_:
if not hasattr(val, field_name):
raise ValidationError("missing required field '%s'" %
field_name)
def validate_type_only(self, val):
"""
Use this when you only want to validate that the type of an object
is correct, but not yet validate each field.
"""
# Since the definition maintains the list of fields for serialization,
# we're okay with a subclass that might have extra information. This
# makes it easier to return one subclass for two routes, one of which
# relies on the parent class.
if not isinstance(val, self.definition):
raise ValidationError('expected type %s, got %s' %
(self.definition.__name__, generic_type_name(val)))
def has_default(self):
return not self.definition._has_required_fields
def get_default(self):
assert not self.definition._has_required_fields, 'No default available.'
return self.definition()
class StructTree(Struct):
"""Validator for structs with enumerated subtypes.
NOTE: validate_fields_only() validates the fields known to this base
struct, but does not do any validation specific to the subtype.
"""
# See PyCQA/pylint#1043 for why this is disabled; this should show up
# as a usless-suppression (and can be removed) once a fix is released
def __init__(self, definition): # pylint: disable=useless-super-delegation
super(StructTree, self).__init__(definition)
class Union(Composite):
def __init__(self, definition):
"""
Args:
definition (class): A generated class representing a Stone union
from a spec. Must have a _tagmap attribute with the following
structure:
_tagmap = {field_name: validator, ...}
where
field_name (str): Tag name.
validator (Validator): Tag value validator.
"""
self.definition = definition
def validate(self, val):
"""
For a val to pass validation, it must have a _tag set. This assumes
that the object validated that _tag is a valid tag, and that any
associated value has also been validated.
"""
self.validate_type_only(val)
if not hasattr(val, '_tag') or val._tag is None:
raise ValidationError('no tag set')
return val
def validate_type_only(self, val):
"""
Use this when you only want to validate that the type of an object
is correct, but not yet validate each field.
We check whether val is a Python parent class of the definition. This
is because Union subtyping works in the opposite direction of Python
inheritance. For example, if a union U2 extends U1 in Python, this
validator will accept U1 in places where U2 is expected.
"""
if not issubclass(self.definition, type(val)):
raise ValidationError('expected type %s or subtype, got %s' %
(self.definition.__name__, generic_type_name(val)))
class Void(Primitive):
def validate(self, val):
if val is not None:
raise ValidationError('expected NoneType, got %s' %
generic_type_name(val))
def has_default(self):
return True
def get_default(self):
return None
class Nullable(Validator):
def __init__(self, validator):
assert isinstance(validator, (Primitive, Composite)), \
'validator must be for a primitive or composite type'
assert not isinstance(validator, Nullable), \
'nullables cannot be stacked'
assert not isinstance(validator, Void), \
'void cannot be made nullable'
self.validator = validator
def validate(self, val):
if val is None:
return
else:
return self.validator.validate(val)
def validate_type_only(self, val):
"""Use this only if Nullable is wrapping a Composite."""
if val is None:
return
else:
return self.validator.validate_type_only(val)
def has_default(self):
return True
def get_default(self):
return None